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A one-dimensional integrable model of fermions with 
multi-particle hopping* 

R Z Barievt, A Kliimper, A Schadschneider and J Zit= 
lnstitut fiir Thwretische Physik, Universitst zu Kah, Ziilpicher S w e  77, D-50937 Kaln, 
Germany$ 

Received 30 November 1994 

Abstract. A model with both single-patticle and multi-particle hopping of electrons on a one- 
dimensional 'triangular' lattice is formulated and solved exactly by Bethe ansak. On the basis 
of the exact calculation of the asymptotic behaviour of correlation functions we find a transition 
behveen the n o d  state and a state with a tendency to 'superconductivity'. The latter sliue is 
confined to small densides of electrons up to a critical density ps. 

Low-dimensional electron systems with strong correlations are studied intensively because 
of their possible relevance to high-T, superconductors. Although the main interest lies in 
the physics of~two-dimensional systems, it is also extremely useful to investigate the one- 
dimensional variants of such models related to high-T, superconductivity. A first reason is 
the conjecture that one- and two-dimensional models have many aspects in common [I]. 
Second, onedimensional models are often integrable and have quite interesting physical 
behaviour. Moreover, such models also provide a testing ground for approaches intended 
for more complex problems. Examples are the onedimensional Hubbard model [2], its 
supersymmetric extension [3], and the supersymmetric t-J model [ G I .  Recently we have 
found a few more inteagable models with a tendency to snpercondnctivity, namely the 
correlated hopping model [7,8], an anisotropic t-J model [9], and a model with interchain 
tunnelling [IO]. 

In this paper we propose a further new model which is exactly solvable and describes 
the competition between singleparticle and multi-particle hopping in one dimension. The 
motivation for our investigation is the pair-hopping model proposed by Penson and Kolb 
[ll]. In adddition to the usual hopping term for electrons and an on-site repulsion energy U 
the Hamiltonian of this model contains a term for the hopping of singlet pairs of electrons 
from site to site:~ 

(1) 

Here CA creates an electron with spin index r (r =~ 1.2) on site j ana n j r  = $cj .  is the 
number operator, HC denotes the Hermitian conjugate. 

x=--Cr C>Cj+i.i f C&Cj+i.z 4- v C ~ C & C j + i . z C j + ~ , i  f HC] 4- u n j 1 n j z .  

j 
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Figure 1. Depiction of the one-dimensional lanice showing the sites for electrons with spin 
T = 1 and 2 on an upper and a lower sublattice, respectively. The infinite Codomb repulsion 
excludes the simultaneous occupation of nearest neighbours, i.e. the occupation of any triangle 
by more than one particle. The closest separation for hvo particles i s  realized by next-nearest 
neighbours represented by squares (disks or diamonds, respectively). The Hamiltonian consists 
of two competing interactio& The single-particle hopping describes the moving of individual 
parlicles on each sublattice by one lanice constant The multi-particle term describes the hopping 
of a pair of particles on next-nearest neighbour sites to adjacent next-nearest neighbour sites, 
for instance from ‘square sites’ U, ‘disk’ or ‘diamond‘ sites, 

This model is not exactly solvable and was studied numerically in the case of a half- 
filled band for U = 0 in [U] and for U # 0 in [12]. A further investigation was based 
on the renormalization group and bosonization method [13]. There are differences in the 
results of these different approaches and, in particular, the question about a possible phase 
transition and its location in the Penson-KolbHubbard model remains open. 

In this paper we consider a modified model which may be illustrated on a ‘one- 
dimensional triangular’ lattice (figure 1). Electrons with spin r = 1 move along the 
upper chain and electrons with spin r = 2 move along the lower chain. We assume 
that the Coulomb repulsion between electrons on nearest-neighbour sites is infinite which 
in the figure is illustrated by the ‘triangular structure’ of (infinite) repulsion. The explicit 
Hamiltonian of this model is given by 

L 

31 = - C P [ C j : C , + 1 . ,  + c j : c j + 1 . 2 +  vcj:c~,,z(cj+l,lcj-l.z+cj+2,1cjz) +HC]P. (2) 

The infinite Coulomb repulsion excludes the double occupancy of any two nearest neigbours 
on the lattice, and P is the projector on the subspace of the allowed states. As in (1) the 
V-term describes pair hopping. L denotes the length of the chain and we assume periodic 
closure. 

The advantage of this model (2) is its integrabiliv, and the exact solution leads to 
interesting results as shown in the following. A simple comparison of Hamiltonians (1) 
and (2) shows that OUT model (2) keeps the main feature of the Penson-Kolb Hamiltonian, 
namely the competition between singleparticle and pair hopping. 

Hamiltonian (2) can even be generatized to an arbitrary number n of spin states, 
z = 1, . . . , n, while keeping integrability. In this case it contains additional multi-particle 
hopping terms and has the following fpm: 

j = l  

Here the infinite Coulomb repulsion excludes the occupancy of any sequence of n+l nearest- 
neigbour sites, ( j ,  r). . . . , ( j ,  n), 0’ + 1, l), . . . , 0’ + 1, r). by more than one particle for 
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any r. 
Model (3) is the inte-pble generalization of (2). Therefore, we first present the solution 

for Hamiltonian (3), then the solution of model (2) is obtained as the most interesting special 
case,:n = 2. ~. 

The exact solution for the eigenstates and eigenvalues of Hamiltonian (3) can be obtained 
within the framework of the Bethe ansatz method [14,15,4]. The central object of this 
method is the two-particle scattering matrix S which is calculated from the single- and 
two-particle processes described by Hamiltonian (3): 

where k = kl - kz and LY # p = 1, . . . , n. The system is integrable as the two-particle 
scattering matrix (4) satisfies the Yang-Baxter equation [14,16]. Furthermore, there are 
no genuine N-particle scattering processes for N 2 3 due to the particular arrangement of 
multi-particle interactions in (3). Therefore the mathematical conditions for eigenstates of 
(3) in the form of a Bethe ansatz are satisfied. For details of this method we refer the reader 
to the literature. 

For finite systems suitable boundary conditions have to be imposed, e.g. periodic ones. 
In this case the momentum kj of each particle is subject to certain quantization conditions 
involving the total scattering phase upon the other particles. This leads to the diagonalization 
problem of products of scattering matrices solved by a subsequent Bethe ansatz. The result 
is given in terms of spin rapidities A$! and nested Bethe ansatz equations 

M”-r sin[$(kj - A t ) )  + it)/2] 

sin[$(kj - A:’)) - iq/2] 

N 
exp(ikjl) = nexp[i(kj  - ki)] n , j = 1, .. . , N 

i=l 

where N is the number of particles. We have introduced the interaction parameter t) (c or 
> 0) via V = e-n. Furthermore we denote the number of particles with spin index r by 
m,  such that 

1 

M = E m r  (6) 
T = l  

is the total number of particles with spin indices 1,Z.. . ., 1. Thus we have M, = N, MO = 0 
and Ay) = kj. 

The total energy and ,momentum of the system me given in terms of the electron 
rapidities kj as 

N N 
E = - 2 C c 0 s k j  P = Ckj. (7) 

j=1 j=1 

Equations (5) hold regardless of the sign of q, nevertheless the structure of the solutions 
is very different for t) > 0 and q < 0. In the case q > 0 (V c 1) there are no complex roots 



2440 

for the k j .  It can be expected that singleparticle hopping dominates in (2). (3) and that the 
particles move independently and there are no bound (Cooper) pairs in the system. In the 
absence of an external field the ground state corresponds to a symmetric configuration with 
the same number of particles m = m, for all spin states 7 = 1,2, . . . , n. Equations (5) are 
straightforwardly 171 reduced to one set of equations for real kj, which in the thermodynamic 
limit ( L  + 00) leads to an integral equation for the density distribution p(k): 

R Z Bariev et a1 

2jrp(k) - Jk 9 ( k  - k')p(k')dk' = 1 
-KO 

where ko i s  determined by the subsidiary condition for the particle density p. 

n, 
l b d k ) d k  = N / L  = P .  

The energy is given by 
E kn 
- = -2 [, coskp(k) dk. L 

In the opposite c a e  q < 0 (V > 1) one expects that the pair-hopping term in (2) 
and, more generally, the multi-particlehopping term in (3) dominate over single-paxticle 
hopping and might lead to a coherent motion of n particles, one from each spin state, and 
ultimately to bound nparticle complexes. This is indeed the case. In the ground state the 
tendency to form bound complexes is maximal and is reflected in the distribution of A t )  
values. A complex of n particles is described by one real A("-') value and associated A 
values given by [15,17] 

= A("-')+i$q p = -(n - r  - I), - ( n - r  -3),  . . . , (n - r  - 1) 

i-=0,1,2 ,..., n - 1  (11) 

up to corrections which are exponentially small in the thermodynamic limit. There are M 
complexes such that N = Mn. Using (11) the Bethe ansatz equations (5) are reduced to 
one set of M equations for the real A, = At-'): 

@(A; q)  = 2 arctan(c0th q tan A/2) - X  < Q(A; V )  ,< X .  

The energy is given by 

The .Iu in (12) are integer (half-integer) numbers for even (odd) (n - 1)(M - 1). 

for the distribution function a(A) of particle complexes: 
In the thermodynamic limit, L,  M + M, equation (12) leads to an integral equation 
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with subsidiary condition 

M P  u(h)dA = - = -. L n  
In order to study the superconducting properties of the model we calculate the long- 

distance behaviour of correlation functions. In the Bethe ansatz approach it is a formidable 
task to deal with correlation functions. However, due to developments in two-dimensional 
conformal field theory the scaling dimensions describing the algebraic decay of correlations 
are, in principle, accessible [18,19]. According to this theory there is a oneto-one 
correspondence between the conformal dimensions of the scaling operators and the finite- 
size corrections for the energies of the excited states of the critical Hamiltonian. Using this 
method we have studied critical properties of an n-sublattice fermion model with correlated 
hopping [71. Fortunately, the Bethe ansatz equations for our present model have the same 
structure as the correlated hopping model and can be analysed in the same way. Therefore, 
omitting the details of the calculation, we only present the results. 

Our model has only one type of gapless excitation. These excitations correspond to the 
motion of particles and particle complexes for q > 0 and q c 0, respectively. As in 171 
the scaling dimensions of the different fields are uniquely expressed in terms of the dressed 
charge Z [19,20]: 

x = ( A N ~ Z ) ~  + Z2d2 + N+ + N-  (16) 
where AN, N+, N -  and d label the quantum numbers which specify gapless excitations. 

= A N  (AM) is the change in the number of particles (complexes of particles) as 
compared to the gound state, N+, N -  are non-negative integers and d is the number of 
particles (complexes of particles) excited from the left Fermi point to the right one. Z is 
the dressed charge at the Fermi point 

where the integral equations for the functions 5 and 5 can be obtained from equations (8) 
and (14), respectively. As a result we have 

t(k) = k p ( k )  <(A) = 2zu(h)/n.  (18) 
The static two-point correlation functions of a scaling field @(r)  at site r with conformal 

dimension n are given by 

(@(r)@(O)) = exp(-2idk~r)/r” (19) 
where 

Let us first consider the case 11 > 0. The leading contribution to the long-distance power- 
law behaviour of the densitydensity correlation function is given by d = l/n, N* = 0 
such that 

(p(r)p(O)) 2 p2 + Ar-Ucos(2k~r) (21) 
where 
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n = 2 .  q > O  

(4 
. I  .I .3 .I .6 .e .? 

P 
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P 

Figure 2. (a) The critical exponent a! in dependence 
on the panicle density p for n = 2 and different values 
of 11 =0.1, 0.5, 1, 10. (b) The same as for (a) with 
negative values of q, 1111 = 0.1, 05, 1, 10. Within 
pphical resolution the curyes for q = 10 m o t  be 
distinguished from 11 = m. 

Fv 3. The cdtical exponent a! for n = 3, similar to 
figure 1. 

and (Y is the critical exponent. To consider the superconducting properties of the system we 
discuss the correlations of complexes of particles, created by 

In the simplest case n = 2 this corresponds to the correlations of singlet pairs. The 
asymptotic behaviour of the correlation function is given by A.N = n and d = 0 or 1/2n 
for even or odd n, respectively. Then we obtain 

(c+(r)C(o)) cz Br-8 p =U-' (W 
for n even and 

(C+(r)C(O)) N Br-8 cos(kFr) @ = a-' + 4 4  (25) 
for n odd, where again p is the critical exponent. 

case, but the critical exponent a is now given in terms of <(ho) as 
Similarly we consider the case 7 < 0. The expressions (Zl), (24), (25) also hold in this 

= ~t<(Ao)12. (26) 
The equations (21)-(26) have a universal structure which is characteristic for a critical 

model with one type of gapless excitation. The critical exponents (21>-(25) can be obtained 
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Figure 4. The phase diagram for q 0 and n = 2. The full line separates regions with 
dominating ’syerconducting’ correlations and domioating density-density correlations (p c (I 
and p z a), respectively. 

from the critical exponents of the correlated hopping model [7] by changing the kemel of 
the integral equation (8) p(k) to @(k), which are simply related by 

p(k) = @(k) - 1. (27) 
The critical exponent of our present model a ( p ,  q) is expressed in terms of the critical 
exponent of the correlated hopping model U&, q) as 

and 

In both cases the density p ranges in 

0 6 P Q P- = E / @  + 1) (30) 
where the maximal density p- is determined from the exclusion of site occupancies (see 
figure 1). 

The solution for U&, q) bas been studied numerically in 171. For q > 0 this 
function has the following behaviour. It varies monotonically from a(& = 0) = 2/n2 
to ar(,)(p = n )  = 2. This shows that, in contrast to the correlated hopping model, in our 
present model for all n there are no densities p for which p < a if q > 0, cf figures Z(a) 
and 3(a). (Note that a(p)  is a non-monotonic function.) In this case singleparticle motion 
dominates over the motion of multi-particle complexes. Therefore there is no tendency 
towards superconductivity for any particle density. 

For q -= 0 the situation is quite different. For all n there exists a critical density pc and 
an intend [O, pc] for which B < a, see figures 2(b) and 3(b). In this case the correlation 
function of n-particle complexes has a slower decay than the density correlation function 
and thus dominates. Thii indicates the tendency to ‘superconductivity’. In figure 4 we show 
the phase diagram with the transition line from normal to ‘superconducting’ behaviour. We 
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suppose that such kind of a transition also exists in the original Penson-Kolb-Hubbard 
model (2) as suggested by numerical calculations in [Ill. 

Acknowledgments 

One of the authors (RZB) gratefully acknowledges the hospitality of the Institut fiir 
Theoretische Physik, Universiat zu Koln. 

R Z Bariev et a1 

References 

[I] Anderson P W 1990 Phys. Rev. Len. 64 1839 
[2] Lieb EH and Wu F Yu 1968 Phys. Rev. Len. 20 1445 
[3] Essler F H L. Korepin V E and Schoutens K 1992 Pkys. Rev. Len. 68 29.% 1993 Pkys. Rev. Lett. 70 73 
[4] Sutherland B 1975 Pkys. Rev. B 12 3795 
[SI Schlomnann P 1987 Phys. Rev. B 36 5177 
[6] Bares P A  and Blatter G 1990 Phys. Rev. Lett 64 2567 
171 Bariev R 2, Kltimper A, Schadschneider A and ZiUartz I 1993 J. Phys. A: Math. Gen 26 1249.4863 
[SI Z i W  I, Kliimper A, Schadschneider A and Bariev R Z 1994 Physica B 194-196 1417 
[9] Bariev R 2, Kltimper A, Schadschneider A and Zittar& J 1995 Z Phys. B 96 395 

[lo] Bariev R Z, Kliimper A, Schadschneider A and Z i W  I 1994 Phys. Rev. B 50 9676 
[ l l ]  Penson K and Kolb M 1986 Phys. Rev. B 33 1663 

Kolb M and Penson K 1986 1. Stat. Phys. 44 129 
[121 Hui A and Doniach S 1993 Phys. Rev. 48 2063 
I131 Aftleck I and Marston I B 1988 X Phys. C: SulidSmfe Phys. 21 2511 
[14] Yang C N 1967 Phys. Rev. Len. 19 1312 
1151 Gaudin M 1983 La Function d'Onde de Bethe (Paris. Masson) 
[16] Baxter R I 1982 hoactly Solved Models in Stat is t id  Mcch ics  (London: Academic) 
[17] Takahashi M 1971 Pro& Tkeor. Phys. 46 401 
1181 Belavin A A, Polyakov A M  and Zamolodchikov A B 1984 N u d  Phvs. B 241 333 
il9i Cardy I L 1986 nrucl. Phys. B 270 186 
[ZO] rZergin A G, Korepin V E and ReshetikhirN Yu 1989 I. Phyc. A: Math Gen 22 2615 


